Introdução a LTSPICE

WIEB II - Minicurso

Prof. Henrique Amorim - UNIFESP - ICT - 2017

 \cap

		LTspice Ho	otKeys			Simu	lator I	Directives - Do	t Commands
17	Schematic	Symbol	Wav	eform	Netlist	Com	mand	Short Desc	cription
	ESC - Evit Mode	ESC - Evit Mode				.AC		Perform a Sn	nall Signal AC Analysis
	E2 - Draw Wire					BACK	ANNU	Annotate the	Subcircuit Pin Names on Port currents
	F5 - Delete	E5 - Delete	E5 - Doloto			.DC		Perform a DU	Source Sweep Analysis
es	F6 - Duplicate	F6 - Duplicate	ru – Delete			.END		End of Netlis	[
po	F7 Movo	F7 Move				ENDS		End of Subci	
Σ						FUUR		Compute a Fo	ourier Component
	FO - Diay	FO - Diay	E0 – Undo		E9 – Undo	FUNC		User Defined	
	Chitty EQ Dada	Chiff. EQ. Dada	Chiff. EQ Dou	do	Chiff. EQ Dado	.FERR	EI	Download a l	File Given the URL
_	Stillt+F9 - Neuu	Ctrl. 7 Zoom Area			Silili+F9 - Redo	.GLOB	AL	Declare Glob	al Nodes
	Ctrl+Z = Zoom Back	Ctrl+Z = Zoom Back	$Ctrl_P = Z0011$	n Rook		.IC		Set Initial Co	nditions
	Space Zoom Eit	GIII+D - ZUUIII DAUK	CtrlyE Zoom	Extente		INCLU	JDE	Include anoth	her File
	Space - Zooni Fit		Ctrl+C - Togg		Ctrl+C - Coto Lino #	LIB		Include a Lib	rary
N O	U. Mark Uppeen Dine	Ctrl M Attribute Window	'0' Clear			.LOAD	BIAS	Load a Previo	busly Solved DC Solution
Ň	0 - Mark Toxt Anchoro	Ctrl+W - Attribute Editor		Traco		.MEAS	SURE	Evaluate Use	r-Defined Electrical Quantities
	A - Wark Text Androis	GIN+A - AUNDULE EUILOI	Ctrl+X - Vortic	al Autorango	Ctrl P - Pup Simulation	.MOD	:L	Define a SPIC	JE Model
	All+Olick - FUWEI		Ctrl+Click Av	ar Autoralige		.NET		Compute Net	work Parameters in a .AC Analysis
	Ctrl H Halt Simulation			Simulation	Ctrl. H. Halt Simulation	NODE	SEI	Supply Hints	for Initial DC Solution
	B - Resistor	R – Rectangle		Simulation		.NOIS	<u> </u>	Perform a No	Dise Analysis
	C - Canacitor	C – Circle		Command	Line Switches	.UP		Find the DC C	Point
			Flag	Short Descrip	tion			Set Simulato	Parameters
	D – Diode		-ascii	Use ASCII .rav	v files. (Degrades performance!)	.PARA	IVI	User-Denneu	Paralleters
	G – GND		-b	Run in batch r	node.	SAVE	DIAC	Limit the Qua	antity of Saved Data
ac	S – Snice Directive		-big or -max	Start as a max	imized window.	SAVE	DIAS	Daramater Si	
E.	T – Text	T – Text	-encrypt	Encrypt a mod	lel library.	.STEP		Parameter SV	eireuit
	F2 – Component		-FastAccess	Convert a bina	ry .raw file to Fast Access Format.	JUDU		Temperature	Circuit
	F4 – Lahel Net		-netlist	Convert a sche	ematic to a netlist.	TE		Find the DC G	Sweeps
	Ctrl+F - Mirror	Ctrl+F – Mirror	-nowine	Prevent use of	WINE(Linux) workarounds.				
	Ctrl+B - Botate	Ctrl+B - Botate	-PCBnetlist	Convert a sche	ematic to a PCB netlist.		-	Do a Nomine	
_			-registry	Store user pre	ferences in the registry.	.WAV	-	White Selecte	
		•	-Run	Start simulatin	g the schematic on open.	Suffix	ĸ	Suffix	Constants
	l'I'Cn	160	-S0I	Allow MOSFET	s to have up to 7 nodes in subcircuit.			f 1e-15	E 2.7182818284590452354
			-uninstall	Executes one s	tep of the uninstallation process.	Т	1e12	p 1e-12	Pi 3.14159265358979323846
			-wine	Force use of W	/INE(Linux) workarounds.	G	1e9	n 1e-9	K 1.3806503e-23
						Meg	1e6	u 1e-6	Q 1.602176462e-19
	\mathcal{A}_{n}	See Demo				К	1e3	M 1e-3	TRUE 1
								Mil 25.4e-6	FALSE 0

TECHNOLOGY NOW PART OF ANALOG DEVICES

Análise DC ou ponto de operação (.op) é realizada para análises de circuitos cujo parâmetros são invariantes no tempo ou para análises DC em regime permanente.

Para esta primeira análise iremos explorar a resposta em regime permanente (DC) dos seguintes elementos de circuito:

Chapter 2, Problem 27.

Calculate I_o in the circuit of Fig. 2.91.

Figure 2.91 For Prob. 2.27.

Solution

The 3-ohm resistor is in parallel with the c-ohm resistor and can be replaced by a [(3x6)/(3+6)] = 2-ohm resistor. Therefore,

$$I_o = 10/(8+2) = 1$$
 A

Passo 1: Adicione os componentes

Adicionar Resistor

Passo 2: Organize os componentes (utilize o atalho **Ctrl-R** para rotacionar os elementos)

Passo 3: Conecte os elementos (clique no botão "wire" ou o atalho F3)

Passo 4: Posicione o ground (clique no botão "Ground" ou o atalho G). O ground será a referência para as obtermos as tensões ↓

Passo 5: Informe os valores de resistência e tensão. Por *default* as resistências possuem resistência R e a fonte de tensão V. Clique com o botão direito sobre estes parâmetros para altera-los

Identificador do elemento

Passo 6: Defina o tipo de simulação (clique em "run" e selecione "DC op pnt") 🔀

Passo 6 (alternativo): Clique em "SPICE Directive", selecione "SPICE directive" e digite ".op" (A opção "SPICE Directive" informa instruções sobre o tipo de simulação, o comportamento dos componentes, formato dos dados carregados, entre muitos outros)

How to netlist this text Comment SPICE directive	Justification Left ~ Vertical Text	Font Size	OK Cancel
.op			-

Assim que a simulação for finalizada o programa irá informar a tensão dos nós e as correntes dos elementos

* Este tipo de simulação possui um inconveniente em relação ao sinal da corrente, o sinal é arbitrado de acordo com a posição do elemento. Para verificar qual a direção arbitrada pelo LTSPICE é necessário realizar a simulação transiente e posicionar o cursor sobre o elemento.

𝖅 * C:\Program F	iles\LTC\LTspiceXVII\I	Draft1.asc	×
Op	erating Point		
V(n001): V(n002): I(R3): I(R2): I(R1): I(V1):	10 2 -0.333333 -0.666667 -1 -1	<pre>voltage voltage device_current device_current device_current device_current</pre>	

Passo 7: Medir parâmetros de tensão, corrente e potência. Passando o cursor sobre os nós ou sobre os componentes, é possível visualizar os parâmetros na barra de *status*.

É possível criar marcadores clicando sobre os fios, por *default* o marcador apresenta a tensão do nó, entretanto, é possível alterar a expressão de acordo com o parâmetro desejado.

*O símbolo "\$" irá retornar a tensão do nó que foi selecionado

🖊 Displayed Data		×
	Only list traces matching	01/
		ОК
Available data:	Asterisks match colons	Cancel
V(n001) V(n002) I(R1) I(R2) I(R3) I(V1) "Artifício"	para melhor visu	ıalização
Edit expression to display be	low. Note: "\$" aliases to "V(n0	02)''
ound(-I(R2)*1K)/1K		
E	valuate, Copy to Clipboard, and Qui	t

Exercício: Utilize o simulador para encontrar os parâmetros Vo e Io do circuito abaixo.

Exercício: Utilize o simulador para encontrar os parâmetros Vo e Io do circuito abaixo.

σ Displayed Data		×
Available data:	Only list traces matching	OK Cancel
I(R1) I(R2) I(R3) I(R4) I(V1)		
Edit expression to display	below. Note: "\$" aliases to "V(n002)"	
ound((I(R1)-I(R3))*1K)/1	к	
	Evaluate, Copy to Clipboard, and Quit	

round((I(R1)-I(R3))*1K)/1K

Exercício: Utilize o simulador para obter a resistência equivalente entre os terminais a-b.

Exercício: Utilize o simulador para obter a resistência equivalente entre os terminais a-b.

Para iniciarmos o estudo da resposta transiente, iremos analisar a resposta de uma senoide em um circuito resistivo (divisor de tensão).

Functions (none) PULSE(V1 V2 Tdelay Trise Tfall Ton Period Ncycles) SINE(Voffset Vamp Freq Td Theta Phi Ncycles) EXP(V1 V2 Td1 Tau1 Td2 Tau2) SFFM(Voff Vamp Fcar MDI Fsig) PWL(t1 v1t2 v2) PWL FILE: Browse DC offset[V]: 0 Amplitude[V]: 10 Freq[Hz]: 1K Tdelay[s]:	DC Value DC value: Make this information visible on schematic: ✓ Small signal AC analysis(.AC) AC Amplitude: AC Phase: AC Phase: Parasitic Properties Series Resistance[Ω]: Parallel Capacitance[F]: Make this information visible on schematic: ✓	R1 100 V1 SINE(0 10 1K)	R2 100
Additional PWL Points Make this information visible on schematic: 🗹	Cancel OK		

Fransient	AC Analysis	DC sweep	Noise	DC Transfer	DC op pnt	
	Perf	om a non-lin	ear, time	-domain simulat	ion.	
				Stop time:	5m	
		Time	e to start	saving data:		
			Maximu	im Timestep:		
Start external DC supply voltages at 0V:						
Stop simulating if steady state is detected:						
Don't reset T=0 when steady state is detected:						
Step the load current source:						
	:	Skip initial op	erating p	oint solution:		
yntax: .tra	an <tstop> [<o< td=""><td>ption> [<optio< td=""><td>on>]]</td><td></td><td></td><td></td></optio<></td></o<></tstop>	ption> [<optio< td=""><td>on>]]</td><td></td><td></td><td></td></optio<>	on>]]			
ran 5m						

É possível navegar pela saída utilizando o cursor

	.meas statements allow y	you to script measure	ements of	waveform data.
	Applicable Analysis	s: TRAN	~	
	Result Name	e: res		
	Genre	e: MAX	~	
Measured Quar	ntity: V(n001)			
Trig Condition				
Right Hand Side:				
TD:				~
Targ Condition		L		
TARG 🗸				
Right Hand Side:				
TD:		[~
ntax : .MEAS TRAN <na hs> [TD = <val>] [<rise]< td=""><td>me> MAX <expr> TRIG <lhs> FALLICROSS> = <count>]</count></lhs></expr></td><td>= <rhs> [TD = <val></val></rhs></td><td>] [<rise< td=""><td> FALL CROSS> = <count>] TARG <lhs></lhs></count></td></rise<></td></rise]<></val></na 	me> MAX <expr> TRIG <lhs> FALLICROSS> = <count>]</count></lhs></expr>	= <rhs> [TD = <val></val></rhs>] [<rise< td=""><td> FALL CROSS> = <count>] TARG <lhs></lhs></count></td></rise<>	FALL CROSS> = <count>] TARG <lhs></lhs></count>

Ctrl - L

Ø SPICE Error Log: C:\Users\Henrique\AppData\Local\Temp\tmp6.log ×
Circuit: * C:\Program Files\LTC\LTspiceXVII\Draft1.asc
.OP point found by inspection.
res: MAX(v(n001))=9.98695 FROM 0 TO 0.005 res2: MAX(v(n002))=4.99347 FROM 0 TO 0.005
Date: Mon Oct 23 19:34:16 2017 Total elapsed time: 0.047 seconds.
<pre>tnom = 27 temp = 27 nethod = modified trap totiter = 2082 traniter = 2082 tranpoints = 1042 accept = 1042 rejected = 0 natrix size = 3 fillins = 0 solver = Normal Matrix Compiler1: 3 opcodes 0.0/[0.0]/0.0 Matrix Compiler2: 175 bytes object code size 0.0/0.1/[0.0]</pre>

Através da opção "PULSE", podemos definir diversas forma de onda para entrada

Para criar etiquetas, utilize o atalho F4

Functions	DC Value
(none)	DC value:
PULSE(V1 V2 Tdelay Trise Tfall Ton Period Ncycles)	Make this information visible on schematic:
◯ SINE(Voffset Vamp Freq Td Theta Phi Ncycles)	
○ EXP(V1 V2 Td1 Tau1 Td2 Tau2)	Small signal AC analysis(.AC)
◯ SFFM(Voff Vamp Fcar MDI Fsig)	AC Amplitude:
O PWL(t1v1t2v2)	AC Phase:
	Make this information visible on schematic:
	Parasitic Properties
VinitialIVI: 0	Series Resistance[Ω]:
VanIVI: 10	Parallel Capacitance[F]:
	Make this information visible on schematic:
Trise[s]: 1m	
Tfall[s]: 1m	
Ton[s]: 2	
Tperiod[s]: 4	
Ncycles:	
Additional PWL Points	
Make this information visible on ophomatic:	

Para visualizar os gráficos separadamente, clique com o botão direito sobre a área do gráfico e então em "Add Plot Plane" e depois em "Add Traces".

🗸 Horizontal Axis		×
Quantity Plotted: V(diodo)		Eye Diagram
Left: 0V	Axis Limits tick: 100mV	Right: 1.4V
Logarithmic	Cancel	ОК

🗗 Diode - D1	
	OK
	Cancel
F	ick New Diode
Diode Properties	
Diode:	1N4148
Manufacturer:	OnSemi
Туре:	silicon
Average Forward Current[A]:	0.2
Breakdown Voltage[V]:	75

Uso de uma entrada rampa para definir a curva característica do diodo

Escolha um diodo real, trace a corrente e altere o eixo horizontal.

Circuito RC de primeira ordem

 $\tau = RC$

Simule a resposta forçada e a resposta natural de um circuito RC, cuja a constante de tempo seja igual a 1 segundo. Utilize um resistor de $1K\Omega$

Tempo	%	
$t = 1\tau$	63,212%	
$t = 2\tau$	86,466%	
$t = 3\tau$	95,021%	
$t = 4\tau$	98, 1 68%	
$t = 5\tau$	99,326%	

Resposta de um circuito RLC paralelo, neste exemplo é possível observar 3 tipos de resposta

- Super amortecida
- Criticamente amortecida
- Sub-amortecida

Para obter as 3 respostas, varie o valor de da resistência

 $R < 250\Omega \rightarrow Super Amortecida$ $R = 250 \rightarrow Criticamente Amortecida$ R > 250 Sub - amortecida

Circuito temporizador circuito RC e comparador (amplificador operacional em malha aberta)

$v_c(t) = V_s(1 - e^{-\frac{t}{RC}})$	$0,5 = e^{-1000t}$
$5 = 10(1 - e^{-1000t})$	$t = -\frac{\ln(0,5)}{1000} = 0,693ms$

<pre> f transiente_comparador.raw </pre>		×		
Cursor	1V(n00	2)		
Horz:	692.92962µs	Vert:	4.5247082mV	
Cursor 2 V(n002)				
Horz:	693.54278µs	Vert:	46.783581mV	
Diff (Cursor2 - Cursor1)				
Horz:	613.16239ns	Vert:	42.258873mV	
Freq:	1.6308893MHz	Slope:	68919.5	

PROF. HENRIQUE AMORIM

Considerando o esquema anterior, calcule a resistência R, para que o circuito sofra um atraso de 2 segundos, de acordo com a resposta abaixo. Considere um capacitor de 10uF

Considerando o esquema anterior, calcule a resistência R, para que o circuito sofra um atraso de 2 segundos, de acordo com a resposta abaixo. Considere um capacitor de 10uF

$$2 = -\ln(0.5) \cdot \tau$$
 \therefore $\tau = 2,88s$ $10\mu \cdot R = 2,88$ \therefore $R = 288,539K\Omega$

Filtros de primeira ordem RC

 $f_c = \frac{1}{2\pi RC} \ (Hz)$

Na frequência de corte, a amplitude do sinal de saída representa 70,71% da amplitude do sinal de entrada

Análise de filtros utilizando arquivo externo

Neste exemplo vamos utilizar o arquivo "ecg_ruído.txt" para analisarmos a ação de um filtro Passa altas e de um filtro Passa Baixas (sinal meramente ilustrativo)

*Apenas para visualizar os efeitos dos filtros, deveria ser anexado um buffer de isolamento entre os estágios

Análise de filtros utilizando arquivo externo

Neste exemplo vamos utilizar o arquivo "ecg_ruído.txt" para analisarmos a ação de um filtro Passa altas e de um filtro Passa Baixas

Comparativo do FFT (escala linear) dos 3 sinais

Aplicação de filtros em sinais de som

Clique com o botão direito na fonte de tensão e preencha o campo Value com o nome do arquivo

 $PB \rightarrow 100 Hz$ e $PA \rightarrow 16 KHz$

Aplicação de filtros em sinais de som (Filtro ativo) *Altere +Vcc e –Vcc para escutar a saturação

 $V_o \leq R_L$

Amplificadores operacionais (configurações básicas)

Seja a configuração de amplificador operacional abaixo. Por meio de simulação, defina qual o máximo de V_s para que V_o não sature.

Após simular este circuito, verificar em qual valor de tensão de in vo é igual a saturação.

Simulando um transformador ideal.

Um transformador ideal, é definido como um transformador sem perdas, ou seja, com coeficiente de acoplamento igual a "1" (acoplamento ideal). Como vamos analisar um transformador ideal, a relação para redução ou a ampliação de tensão pode ser calculada pelo relação entre espiras do primário e secundário ou pela indutância destes enrolamentos. De acordo com a expressão:

$$\frac{V_p}{V_s} = \frac{N_P}{N_s} = \frac{I_s}{I_P} = \sqrt{\frac{L_P}{L_s}}$$

Se LP > LS \rightarrow Redução de tensão Se LS > LP \rightarrow Ampliação de tensão Se LS = LP \rightarrow Circuito isolador

Adicione um diodo para visualizar o efeito de um retificador de meia onda.

A queda de tensão de 0,7V referente ao diodo

Utilize uma ponte retificadora com diodos para visualizar a retificação de onda completa.

Retificador de onda completa e filtro capacitivo com TAP central

Simule o circuito transistorado de polarização fixa e verifique a influência de C2 neste circuito

Switch

